708 research outputs found

    Characterization of Magnetic Nanostructured Materials by First Order Reversal Curve Method

    Get PDF
    The Interactions and magnetization reversal of Ni nanowire arrays and synthetic anit-ferromagnetic coupled thin film trilayers have been investigated through first order reversal curve (FORC) method. By using a quantitative analysis of the local interaction field profile distributions obtained from FORC, it has proven to be a powerful characterization tool that can reveal subtle features of magnetic interactions

    Fluctuations in fluid invasion into disordered media

    Get PDF
    Interfaces moving in a disordered medium exhibit stochastic velocity fluctuations obeying universal scaling relations related to the presence or absence of conservation laws. For fluid invasion of porous media, we show that the fluctuations of the velocity are governed by a geometry-dependent length scale arising from fluid conservation. This result is compared to the statistics resulting from a non-equilibrium (depinning) transition between a moving interface and a stationary, pinned one.Comment: 4 pages, 4 figure

    Preparation of Ni–YSZ thin and thick films on metallic interconnects as cell supports. Applications as anode for SOFC

    Get PDF
    In this work, we propose the preparation of a duplex anodic layer composed of both a thin (100 nm) and a thick film (10 lm) with Ni–YSZ material. The support of this anode is a metallic substrate, which is the interconnect of the SOFC unit cell. The metallic support limits the temperature of thermal treatment at 800 C to keep a good interconnect mechanical behaviour and to reduce corrosion. We have chosen to elaborate anodic coatings by sol–gel route coupled with dip-coating process, which are low cost techniques and allow working with moderate temperatures. Thin films are obtained by dipping interconnect substrate into a sol, and thick films into an optimized slurry. After thermal treatment at only 800 C, anodic coatings are adherent and homogeneous. Thin films have compact microstructures that confer ceramic protective barrier on metal surface. Further coatings of 10 lm thick are porous and constitute the active anodic material

    Development of lanthanum nickelate as a cathode for use in intermediate temperature solid oxide fuel cells

    Get PDF
    The performance of lanthanum nickelate, La2NiO4+ÎŽ (LNO), as a cathode in IT-SOFCs with the electrolyte cerium gadolinium oxide, Ce0.9Gd0.1O2−ή (CGO), has been investigated by AC impedance spectroscopy of symmetrical cells. A significant reduction in the area specific resistance (ASR) has been achieved with a layered cathode structure consisting of a thin compact LNO layer between the dense electrolyte and porous electrode. This decrease in ASR is believed to be a result of contact at the electrolyte/cathode boundary enhancing the oxygen ion transfer to the electrolyte. An ASR of 1.0 Ω cm2 at 700 °C was measured in a symmetrical cell with this layered structure, compared to an ASR of 7.4 Ω cm2 in a cell without the compact layer. In addition, further improvements were observed by enhancing the cell current collection and it is anticipated that a symmetrical cell consisting of a layered structure with adequate current collection would lower these ASR values further

    Investigation of Graded La2NiO4+ Cathodes to Improve SOFC Electrochemical Performance

    Get PDF
    Mixed ionic and electronic conducting MIEC oxides are promising materials for use as cathodes in solid oxide fuel cells SOFCs due to their enhanced electrocatalytic activity compared with electronic conducting oxides. In this paper, the MIEC oxide La2NiO4+ was prepared by the sol-gel route. Graded cathodes were deposited onto yttria-stabilized zirconia YSZ pellets by dip-coating, and electrochemical impedance spectroscopy studies were performed to characterize the symmetrical cell performance. By adapting the slurries, cathode layers with different porosities and thicknesses were obtained. A ceria gadolinium oxide CGO barrier layer was introduced, avoiding insulating La2Zr2O7 phase formation and thus reducing resistance polarization of the cathode. A systematic correlation between microstructure, composition, and electrochemical performance of these cathodes has been performed. An improvement of the electrochemical performance has been demonstrated, and a reduction in the area specific resistance ASR by a factor of 4.5 has been achieved with a compact interlayer of La2NiO4+ between the dense electrolyte and the porous La2NiO4+ cathode layer. The lowest observed ASR of 0.11 cm2 at 800°C was obtained from a symmetrical cell composed of a YSZ electrolyte, a CGO interlayer, an intermediate compact La2NiO4+ layer, a porous La2NiO4+ electrode layer, and a current collection layer of platinum paste

    Viscous stabilization of 2D drainage displacements with trapping

    Full text link
    We investigate the stabilization mechanisms due to viscous forces in the invasion front during drainage displacement in two-dimensional porous media using a network simulator. We find that in horizontal displacement the capillary pressure difference between two different points along the front varies almost linearly as function of height separation in the direction of the displacement. The numerical result supports arguments taking into account the loopless displacement pattern where nonwetting fluid flow in separate strands (paths). As a consequence, we show that existing theories developed for viscous stabilization, are not compatible with drainage when loopless strands dominate the displacement process.Comment: The manuscript has been substantially revised. Accepted in Phys. Rev. Let

    Permeability Prediction from Mercury Injection Capillary Pressure: An Example from the Perth Basin, Western Australia

    Get PDF
    For shale gas reservoirs, permeability is one of the most important—and difficult—parameters to determine. Typical shale matrix permeabilities are in the range of 10 microdarcy–100 nanodarcy, and are heavily dependent on the presence of natural fractures for gas transmissibility. Permeability is a parameter used to measure the ability of a rock to convey fluid. It is directly related to porosity and depends on the pore geometry features, such as tortuosity, pore shape and pore connectivity. Consequently, rocks with similar porosity can exhibit different permeability. Generally, permeability is measured in laboratories using core plugs. In some cases, however, it is difficult to obtain suitable core plugs. In these instances, other approaches can be used to predict permeability, which are chiefly based on mathematical and theoretical models. The approach followed in this peer-reviewed paper is to correlate permeability with capillary pressure data from mercury injection measurements. The theoretical and empirical equations, introduced in the literature for various conventional and unconventional reservoir rocks, have been used to predict permeability. Estimated gas shale permeabilities are then compared with results from transient and steady state methods on small pieces of rocks embedded in a resin disk. The study also attempts to establish a suitable equation that is applicable to gas shale formations and to investigating the relationship between permeability and porosity

    Simulating temporal evolution of pressure in two-phase flow in porous media

    Get PDF
    We have simulated the temporal evolution of pressure due to capillary and viscous forces in two-phase drainage in porous media. We analyze our result in light of macroscopic flow equations for two-phase flow. We also investigate the effect of the trapped clusters on the pressure evolution and on the effective permeability of the system. We find that the capillary forces play an important role during the displacements for both fast and slow injection rates and both when the invading fluid is more or less viscous than the defending fluid. The simulations are based on a network simulator modeling two-phase drainage displacements on a two-dimensional lattice of tubes.Comment: 12 pages, LaTeX, 14 figures, Postscrip

    Immigrant community integration in world cities

    Full text link
    As a consequence of the accelerated globalization process, today major cities all over the world are characterized by an increasing multiculturalism. The integration of immigrant communities may be affected by social polarization and spatial segregation. How are these dynamics evolving over time? To what extent the different policies launched to tackle these problems are working? These are critical questions traditionally addressed by studies based on surveys and census data. Such sources are safe to avoid spurious biases, but the data collection becomes an intensive and rather expensive work. Here, we conduct a comprehensive study on immigrant integration in 53 world cities by introducing an innovative approach: an analysis of the spatio-temporal communication patterns of immigrant and local communities based on language detection in Twitter and on novel metrics of spatial integration. We quantify the "Power of Integration" of cities --their capacity to spatially integrate diverse cultures-- and characterize the relations between different cultures when acting as hosts or immigrants.Comment: 13 pages, 5 figures + Appendi

    Linkage mapping reveals sex-dimorphic map distances in a passerine bird

    Get PDF
    Linkage maps are lacking for many highly influential model organisms in evolutionary research, including all passerine birds. Consequently, their full potential as research models is severely hampered. Here, we provide a partial linkage map and give novel estimates of sex-specific recombination rates in a passerine bird, the great reed warbler (Acrocephalus arundinaceus). Linkage analysis of genotypic data at 51 autosomal microsatellites and seven markers on the Z-chromosome (one of the sex chromosomes) from an extended pedigree resulted in 12 linkage groups with 2–8 loci. A striking feature of the map was the pronounced sex-dimorphism: males had a substantially lower recombination rate than females, which resulted in a suppressed autosomal map in males (sum of linkage groups: 110.2cM) compared to females (237.2cM; female/male map ratio: 2.15). The sex-specific recombination rates will facilitate the building of a denser linkage map and cast light on hypotheses about sex-specific recombination rates
    • 

    corecore